
Learning In-Hand Translation Using Tactile Skin
With Shear and Normal Force Sensing

Jessica Yin1,2 Haozhi Qi1,3 Jitendra Malik1,3 James Pikul4 Mark Yim2 Tess Hellebrekers1

1Meta FAIR 2University of Pennsylvania GRASP Lab 3UC Berkeley 4UW-Madison

RL Policy Trained in Sim3-Axis Tactile Skin Model

Real World Adaptation With Tactile Skin and Proprioception
Unseen Object Geometries Novel Hand Orientations & Object Dynamics

t

t

Figure 1: We present a tactile skin model that enables zero-shot sim-to-real transfer of ternary shear
and binary normal forces. We use it to learn an RL policy for dexterous in-hand translation that uses
tactile and proprioceptive feedback to adapt to unseen object geometries, novel hand orientations,
and new object dynamics. We evaluate our policies with over 190 real-world rollouts. More videos
are at our project website.

Abstract: Recent progress in reinforcement learning (RL) and tactile sensing has
significantly advanced dexterous manipulation. However, these methods often uti-
lize simplified tactile signals due to the gap between tactile simulation and the real
world. We introduce a sensor model for tactile skin that enables zero-shot sim-to-
real transfer of ternary shear and binary normal forces. Using this model, we
develop an RL policy that leverages sliding contact for dexterous in-hand transla-
tion. We conduct extensive real-world experiments to assess how tactile sensing
facilitates policy adaptation to various unseen object properties and robot hand ori-
entations. We demonstrate that our 3-axis tactile policies consistently outperform
baselines that use only shear forces, only normal forces, or only proprioception.

Keywords: Tactile Sensing, Sim-to-Real, Dexterous Manipulation

1 Introduction
Humans rely on their sense of touch to manipulate objects throughout their daily lives [1]. Inspired
by this, a prominent area of manipulation research focuses on equipping robots with tactile sen-
sors [2, 3]. However, despite the development of capable tactile sensors [4, 5, 6], there remains
a significant gap between the breadth of information they can capture and what state-of-the-art
robot controllers can utilize for feedback. Recently, reinforcement learning (RL) and sim-to-real

ar
X

iv
:2

40
7.

07
88

5v
1

 [
cs

.R
O

]
 1

0
Ju

l 2
02

4

https://jessicayin.github.io/tactile-skin-rl/

techniques have enabled breakthroughs in integrating tactile feedback into low-level controllers for
dexterous manipulation [7, 8, 9]. However, these are constrained by the speed and accuracy of tac-
tile simulation techniques and often rely on simplified tactile signals. Although tactile simulation
has been actively pursued recently [10, 11, 12], simulating rich, large-area, and high-fidelity tactile
sensing with high throughput remains a challenge.

Tactile sensors approximate contact through soft body deformation, which is traditionally modeled
using slow and high-fidelity techniques like FEM [13, 14, 15]. At the other extreme, most simula-
tors fast enough to train RL controllers use overly simplified contact models for numerical stability,
which struggle to bridge the sim-to-real gap. Robotic dexterity requires a balance between simula-
tion speed and fidelity to fully leverage the progress in both tactile sensing and RL techniques. To
that end, we introduce a tractable tactile skin model that outputs binary normal and shear forces at
5000 FPS on two GPUs, achieving 70% of the speed of training a proprioception-only policy. We
demonstrate the fidelity of the proposed tactile sensor model through zero-shot sim-to-real transfer
of policies trained entirely in simulation.

We focus on in-hand translation of objects across the palm. In-hand translation is useful for practical
applications such as repositioning tools to a specific grasp, and is also challenging because it requires
controlled sliding of the objects [16, 17, 18]. We choose this task specifically to better investigate
the utility of our ternary shear outputs in improving policy performance. With current limitations
in simulating contact dynamics and tactile skin, we have yet to see examples of this dexterous skill
with tactile feedback including shear forces.

In summary, we introduce our sim-to-real approach for in-hand object translation using tactile sens-
ing. We make three key contributions:

• To the best of our knowledge, we contribute the first RL-tractable sensor model for compliant
tactile skin that enables zero-shot sim-to-real transfer of binary normal and shear signals.

• We use our three-axis sensor model to learn RL control policies for in-hand translation, a dexter-
ous, contact-rich task that requires controlled sliding contact.

• We evaluate our control policies with 190 real-world rollouts and show that policies with three-
axis tactile sensing achieve superior in-domain task performance and adaptation to unseen objects
and hand orientations.

2 Related Work
Tactile Sensor Simulation. The crux of tactile sensor simulation is efficiently and sufficiently
modeling the deformations and forces at the soft contact interface. Most works focus on simulating
fingertip visuo-tactile sensors, which use cameras to observe soft material deformations upon contact
[10, 19, 20]. Finite Element Method (FEM)-based approaches are high fidelity [21, 22, 23], but their
computational cost prevents their use in RL policy learning. Si et al. [12] uses FEM to demonstrate
a sim-to-real RL policy for two-fingered grasping, but the tractability may not extend beyond this
small action space. Tacto [11], Mujoco [24], and IsaacGym [25] use collision geometry penetration
to efficiently estimate forces. While this can be sufficiently accurate for normal forces, it produces
sparse signals for shear. Xu et al. [10] leverages rigid-body assumptions in tactile modeling for sim-
to-real, but assumes constant and sticking contact, and other contact modes are not demonstrated.

Far fewer recent works explore non-camera based tactile skin simulation [26, 27]. These approaches
decouple deformation modeling and sensor response to account for cross-talk and noise, producing
realistic data but suffering from intractability for RL policy training. Yin et al. [8] simulates force-
sensitive resistors as binary tactile sensors using the default IsaacGym tactile sensor model. In
contrast, our work introduces a simulation model for both normal and shear forces for a magnetic
tactile skin [6, 28].

In-Hand Manipulation. In-hand manipulation has been studied for decades using either classical
control [18, 29, 30, 31, 32, 33, 34, 35] approaches or learning-based methods. Learning-based
methods can be categorized to real-world imitation learning [36, 37, 38, 39, 40] and sim-to-real
with reinforcement learning [41, 42, 43, 44, 45]. Our method falls into the latter category and

2

y

x
z

A.

ReSkin Palm

B. C. D.

Taxel

x
y

z Collision
Geometry

Figure 2: Our modeling approach for sim-to-real transfer of tactile skin. A) We model the palm as a
continuous surface with 16 discrete taxels, each corresponding to an underlying magnetometer. B) We use a
cylinder for each taxel and extend the sensing range (R) beyond its collision geometry. C) We sample points on
the object and represent the collision surface as a point cloud. Points within sensing range are denoted as i. D)
We sum the penetration distances Pi = R− li, where li is the distance from point i to the sensor’s origin. We
calculate the sensor signals for shear and normal force using

∑n
i=1 Pi, object velocity, and object point density.

differs from existing work from two perspectives. First, the majority of existing methods focus on
in-hand object reorientation [7, 8, 46, 47] while our work focuses on in-hand object translation.
This task is a complementary skill with in-hand rotation, and a critical step towards general in-hand
manipulation. Second, most existing learning-based in-hand manipulation systems use vision [44]
and proprioception [46], or simplified touch sensing limited to normal forces [7, 8]. In contrast, our
touch sensing pipeline provides both shear and normal forces for controller feedback.

3 Tactile Skin Model
Our sensor model focuses on ReSkin [6], a magnetic elastomer tactile skin, which we adhere to
the palm of the robot hand (Figure 2A). As the skin deforms and the positions of the embedded
magnetic particles change, underlying magnetometers measure the magnetic flux as a proxy for
3-axis force. To minimize the effects of hysteresis and cross-talk, we binarize the sensor outputs
in both simulation and reality. We implement our tactile sensor model and train our RL policy in
IsaacGym [25], and it achieves around 70% of training speed compared to training without any
tactile sensors. For context, with 2 NVIDIA RTX-4090 GPUs, we get 5000 FPS training with tactile
sensors and approximately 7000 FPS without tactile sensors.

Our approach contrasts with the default tactile sensor models offered in simulators such as Mujoco
and IsaacGym, which report normal and shear signals calculated primarily from collision geometry
penetration (Figure 3). Although this approach offers numerical stability in simulation by neglecting
rapid changes in frictional forces, it produces sparse and unrealistic signals for shear forces in tactile
sensor models. Our sensor model outputs sufficiently accurate shear and normal forces for sim-
to-real transfer, while still leveraging the speed and stability of the simulator by using collision
geometry penetration to calculate dynamics and contact interactions.

3.1 Discretization

The ReSkin palm is modeled in two parts. First, we model the ReSkin palm pad as a rigid volume
with the same physical dimensions as the real sensing skin. The simulated ReSkin palm pad acts as
a continuous collision surface for more accurate dynamics during the task. Second, although ReSkin
is continuous, we discretize the sensing skin to 16 discrete taxels, each corresponding to the location
of an underlying magnetometer (Figure 2A). We model each ReSkin taxel as a cylinder collision
geometry (r = 1.5 cm), placed coincidentally on the surface of the ReSkin palm.

3.2 Compliance

We use two techniques to model the compliance of ReSkin: 1) extending each sensor’s range beyond
its collision geometry, and 2) representing the manipulated object as a point cloud, with each point
contributing to the tactile sensor signal. Extending the sensing range beyond its geometry allows for
sensor activation by object “contact” without collision (Figure 2B). This mimics an interaction with
a compliant volume by not exerting a large reaction force on the object. For the object point cloud,
we uniformly sample only from the object surface to represent the contact geometry. For object
points within the sensing range, the penetration distances directly scale the sensor signal (Figure

3

Signed Binary Signal (scaled for visualization) Normal Signal ZShear Signal YShear Signal X
Time (s)

-425

-450

-475

-600

-650

-4600

-4620

-4640

M
ag

ne
tic

 F
lu

x
(u

T)

Real ReSkinA.

0 5 10 15 20
Time (s)

Fo
rc

e
(N

)

IsaacGym Force SensorB.

0 5 10 15 20

2

-2

0

2

-2
10

5

0

0

Our Tactile Skin ModelC.

0 5 10 15 20
Time (s)

0.2

0.2

0

0

-0.2

-0.2
1

0.5

0

Fo
rc

e
(N

)

Figure 3: Tactile signal comparisons during an entire episode of in-hand translation. A) A representative
example of real-world ReSkin palm taxel output. The signals are periodic because the finger gait is periodic.
B) The force sensor output of a simulated palm taxel, using the default IsaacGym force sensor model similar to
[8, 47]. The signals are sparse because the model relies on collision geometry penetration. C) The taxel outputs
from our simulated S3-Axis tactile skin model, for the same taxel and the same rollout as B.

2C-D). This technique allows us to calculate tactile signals that correspond with intersecting contact
volumes, in contrast to using the typical single point per two body collision approximation.

3.3 Shear and Normal Sensor Signals

To calculate shear signals, we draw inspiration from Coulomb models of sliding and rolling con-
tact [48] that scale tangential forces with normal force and object velocity. We use: Sx,t =∑n

i=1 Pi

D (vx,t + ωx,t) and Sy,t =
∑n

i=1 Pi

D (vy,t + ωy,t) where x and y correspond to global coor-
dinate axes and are tangential to the sensor surface, Sx,t and Sy,t are the shear signals produced
by each taxel, vx,t and vy,t are the linear velocities of the object, ωx,t and ωy,t are the angular ve-
locities of the object,

∑n
i=1 Pi is the summation of object point penetration distances within the

sensing range, and D is the object point density (total number of object points divided by object
volume). The point penetration distance is the L2 norm of sensor range and the 3D object point
coordinates. For the normal force signal, we use Sz,t =

∑n
i=1 Pi

D . We calculate the normal force
with the summation of object point penetration distances, divided by object point density. The object
point penetration distances are a proxy for normal force. Dividing by object point density accounts
for different scales of the object.

To bridge the reality gap, we train the control policy with thresholded sensor signals from our tactile
skin model: Sx,t ∈ {−1, 0, 1}, Sy,t ∈ {−1, 0, 1}, and Sz,t ∈ {0, 1}. For the signed 3-axis policy
variant (S3-Axis), we retain positive and negative signs of shear signals, which give direction along
each axis. For the unsigned 3-axis policy variant (U3-Axis), we take the absolute value of the shear
signal. Additionally, Sx,t, Sy,t = 0 if vx,t, vy,t, ωx,t, ωy,t = 0. Although this neglects potentially
nonzero friction forces while velocities are 0, it reflects how real ReSkin signals are binarized.

3.4 Real-World Binary Tactile Processing

Raw signals from ReSkin have significant hysteresis, such that simple thresholding is not sufficient
for binarization. Instead, we use a threshold on the time derivative of the signal. We use two buffers:
one for signal history and one for the current signal. If the difference between the signal history and
current signal buffers exceeds the threshold, then a 1 or −1 is returned (else 0). We tune buffer sizes
and thresholds per x, y, z axis. There is a slight delay in binary sensor outputs due to the dependence
on signal history, but because ReSkin outputs data four times faster (78Hz) than the policy sampling
rate (20Hz), we find this delay to be negligible. Additionally, using the time derivative means that
if there is no signal change, the binarization algorithm will eventually output 0. We make this trade-
off in our binarization algorithm to cope with hysteresis; however, in practice, this scenario is rare
because the object is typically in motion and causes frequent signal changes.

4

Proprio.

Object

�� Oracle Policy (Sim)
Goal Goal

Control

Binary
3-Axis

Magnetic Flux

Proprio.

H
is

to
ry

H

is
to

ry

Joint States

3-Axis Tactile

16 Taxels

ReSkin

�� Deployment (Real)

Filter

�� Tactile Policy (Sim)

Simulated ReSkin

Proprio.

Info.

Policy
Control
Policy

Goal

Control
Policy

Figure 4: Overview of our training and deployment pipeline. We train the policy in two stages, entirely in
simulation. We use our tactile skin model in the second stage. The policy is directly deployed in the real world.

4 Learning In-Hand Translation with Tactile Skin

To demonstrate the effectiveness of our simulated tactile skin model, we perform sim-to-real experi-
ments on the in-hand translation task. This task requires rich, controlled sliding contact on the palm,
so we hypothesize that palm tactile feedback can be particularly useful.

Oracle Policy Learning. We adopt a two-stage method for policy learning from [46, 7]. First, we
train an oracle policy π with privileged information openly available from the simulator. Second, we
train the tactile policy with an observation encoder using our simulated sensor model and freeze the
control policy π. During deployment, we directly deploy the control policy and observation encoder
in the real world. An overview is shown in Figure 4.

The privileged information includes object state and physical properties sampled from the simulator.
This information includes object position, velocity, size, mass, center of mass, and coefficient of
friction. It is then encoded in an 8-dimensional vector, zt, representing information that the policy
finds useful and relevant for the task. The inputs to the oracle policy, π, are finger joint positions
from proprioception and the encoded privileged information, zt. The policy outputs the 16 joint
position targets of the PD controller, at ∈ R16. The observation ot contains a temporal window of
joint positions and actions, ot = [qt, at] ∈ R96. This gives us at = π(ot, zt).

The task requires the control policy to translate objects in one direction across the palm. Our reward
function uses penalties on object state to specify the in-hand translation task and penalties on robot
behavior to produce finger gaiting. The reward contains three main terms: task rewards (riht, rgoal)
to define the task, motion penalties (rrotp, rpose), and energy penalties (rwork, rtorque, rforce). Please see
the Appendix for the detailed reward formulation. We use PPO [49] to optimize the oracle policy and
share weights between the policy and the critic network. An extra linear projection layer estimates
the value function. During training, a cylinder with randomized physical properties is initialized in
a stable grasp for each environment and we assign a random goal position to the environment.

Tactile Policy Learning. The key difference between the oracle policy and the tactile policy is the
observation encoder. We concatenate simulated sensor data from proprioception (qt) and our tactile
skin model ([Sx,t, Sy,t, Sz,t]) as inputs to the observation encoder. The observation encoder is
a transformer trained to minimize the L2 norm between: 1) zt and ẑt, aiming to replicate the
privileged representation from simulated sensor data, and 2) at and ât, aiming to replicate the same
actions as the oracle control policy.

5 Experiment Setup

Hardware Setup. We use an Allegro Hand [50] for our experiments. It has four fingers, each with
four degrees of freedom (DoF). The 16 joints receives target joint position from neural network
controller at 20Hz, and the commands will be converted to torque using a PD controller at 300Hz.
ReSkin, measuring approximately 37 mm x 96 mm, is adhered to the palm of the Allegro Hand and
outputs tactile data in R16×3 at 78Hz. Since there is high friction between the objects and ReSkin,
the ReSkin palm is covered with a 0.25 mm sheet of PET-like plastic to reduce the required torque
from the robot fingers for the task, thus avoiding overheating.

Simulation Setup. We use the IsaacGym [25] simulator to train our policy. Each environment
contains a robot hand and randomly scaled cylinder (Figure 5). We use our model from Section 3 to

5

simulate tactile data. The simulation frequency is 200Hz, and the control frequency is 10Hz. Each
episode lasts 400 time steps (20 s) and resets when the object falls.

Training

No Hand Tilt

Testing

Hand TiltNovel PhysicalCylinders Only
Properties Against Gravity

Figure 5: Train and test sets. We
train with cylinders and no hand tilt
in simulation. We test on real objects
with varying COM, geometries, and
hand angles. Motion capture mark-
ers on the objects are only for mea-
suring task metrics.

Ablations. We ablate tactile modalities to compare our meth-
ods, Signed 3-Axis (S3-Axis) and Unsigned 3-Axis (U3-Axis). All
policies are trained with the same oracle policy, and all tactile
policies use proprioception and 16 palm taxels.

1. Signed Shear Only. The tactile sensors only output ternary
values for shear forces: Sx,t, Sy,t ∈ {−1, 0, 1} and Sz,t ∈ 0.

2. Normal Only. The tactile sensors only output binary values
for normal forces: Sx,t, Sy,t ∈ {0} and Sz,t ∈ {0, 1}. This
baseline is similar to [8].

3. Proprioception Only. The policy is trained without tactile
sensors.

Metrics. We use the following metrics to measure policy performance. We use Optitrack motion
capture to track object pose at 240Hz to calculate these metrics. For all metrics, higher is better.

1. Success Rate. Success is defined as the policy achieving an object translation distance greater
than 0 mm within 120 s. We set the threshold to be 0 mm because some policies completely fail
to move the object or drop it, especially when the hand is tilted.

2. Average Object Distance. The average maximum distance (cm) an object moves along the desired
translation axis, calculated from successful rollouts.

3. Average Object Velocity. The average object velocity (cm/s) along the desired translation axis,
calculated from successful rollouts.

Object Dataset. We evaluate policies with the following in-domain (ID) and out-of-domain (OOD)
objects. Our test set consists of real objects only: cylinder (ID), hammer (OOD, skewed COM),
screwdriver (OOD, challenging geometry), and water bottle (OOD, variable COM) (Figure 5). More
object details are in the Appendix.

6 Results and Analysis

An overview of our deployment pipeline is shown in Figure 4, and notably, all evaluations are
conducted in the real world.

We first test in-domain policy performance on the canonical cylinder object, to compare Proprio-
Only and a 3-axis tactile policy. Then, with the same cylinder, we test policy adaptation to OOD
hand tilt angles against gravity. These tilt angles passively bias object motion opposing the desired
translation direction, thus requiring more force from fingers and gait adaptation to complete the task.
This experiment isolates the effect of tilting the hand. Finally, we test policy adaptation to OOD
objects and hand tilt angles. We are interested in the limits of policy adaptation, so experiments
focus on the maximum angles at which policies are still capable of completing the task.

6.1 Tactile Sensing Boosts In-Domain Task Performance and Adaptation to OOD Hand Tilt

First, we evaluate the performance of S3-Axis and Proprio-Only policies with the same setting as
in training: translate a cylinder with no hand tilt (Figure 6A). We deploy 5 real-world rollouts for
each policy. The S3-Axis policy achieves an increase of 38% translation distance (+2 cm) and 94%
greater object velocity (+0.16 cm/s) compared to the Proprio-Only policy. Additionally, the S3-Axis
policy performs more consistently, with lower standard deviations for both task metrics.

Next, we test the effect of hand tilt, an OOD condition that increases the object’s tangential force
opposing the desired direction of translation. We test hand tilts from 0-15 degrees in increments of
5 degrees. As shown in Figure 6A, the translation distance and object velocity generally decrease
as the tilt angle increases. This indicates that task difficulty increases with hand tilt. The finger gait
adaptations are less effective and the policy is slower to find effective adaptations to OOD physics.
However, S3-Axis still outperforms Proprio-Only in both task metrics, across all tilt angles.

6

S3-Axis U3-Axis Signed Shear Only Normal Only Proprio Only

S3
-A

xi
s

U
3-

A
xi

s

S.
 S

he
ar

Pr
op

ri
o

N
or

m
al

Policy Adaptation to OOD Objects with Hand Tilt B.

Control Policy Control PolicyControl Policy

Su
cc

es
s

Ra
te

 (%
)

D
is

ta
nc

e
(c

m
)

Ve
lo

ci
ty

 (c
m

/s
)

0 0 0

0.05

0.10

0.15

0.20

40

80

100

60

20
2

4

6

8Avg. Success Rate Avg. Object Distance Avg. Object VelocityAvg. Distance Avg. Velocity

D
is

ta
nc

e
(c

m
)

0

2

4

6

8

Ve
lo

ci
ty

 (c
m

/s
)

0

0.1

0.2

0.3

(degrees)

0 5 10
Hand Angle Tilt

15

(degrees)

0 5 10
Hand Angle Tilt

15

Cylinder with Hand TiltA.

Figure 6: A. Real-world cylinder rollouts with S3-Axis and Proprio-Only. This shows superior S3-Axis
policy performance compared to Proprio-Only for both ID and OOD conditions. Error bars indicate standard
deviation. B. Three-axis tactile sensing policies demonstrate the best adaptation to OOD objects and
unseen hand orientations. S3-axis enables 93% average success rate and +51% increase in distance over
Proprio-Only. U3-axis enables +60% increase in velocity over Proprio-Only. These metrics are averaged over
all real-world OOD experiments (30 rollouts/policy).

6.2 Three-Axis Tactile Sensing Enables Superior Out-of-Domain Adaptation

In this section, we simultaneously test policy adaptation to two classes of perturbations: hand an-
gle tilt and OOD objects. The three-axis tactile sensing policies achieve the best policy adaptation.
We benchmark our results against Signed Shear Only, Normal Only, and Proprio-Only. In the re-
maining section and Figure 6B, we show that across all OOD experiments, S3-Axis and U3-Axis
policies achieve, on average, superior performance compared to the other baselines. In Figure 7A,
we highlight interesting cases. Full experimental results are in the Appendix.

Screwdriver - Challenging Geometry - No Hand Tilt. We evaluate our policy on the challeng-
ing screwdriver object. The screwdriver is highly nonuniform, featuring distinctly discontinuous
surfaces that create multiple points of contact with the palm. This leads to very different tactile sig-
natures compared to the training distribution. All policies are capable of the task, but the U3-Axis
policy is the most effective, achieving +6.3% improvement in distance and +32% improvement in
velocity over the next best policy.

Hammer - Skewed COM and Rectangular Geometry - 15-20 Degree Hand Tilt. The hammer
has a skewed COM, located around the intersection of the head and handle. This introduces OOD
physics, as torque from gravity applied at the COM (unsupported by the palm) makes the hammer
inherently less stable during translation. Also, the handle is rectangular, so there is more contact
with the palm, compared to cylinders from training. All policies are capable at 15 degrees, but there
is significant performance degradation at 20 degrees. Here, signed shear is particularly valuable:
the S3-Axis and Signed Shear Only policies achieve the best task metrics. The S3-Axis policy
achieves +149% distance and +20% success over the next best policy. Surprisingly, the U3-Axis
policy completely failed with this case, and the other policies struggled to manipulate the hammer.
The failure modes of the policies are: 1) the policy does not adapt to produce an effective gait within
120 s, or 2) the hammer slips and falls.

Water Bottle - Variable COM and Irregular Geometry - 0-10 Degree Hand Tilt. The water
bottle has a variable COM as the water sloshes in the bottle and the bottle geometry is an irregular
cylinder. When the hand is tilted and at the beginning of the task, the water is at the bottom of the
bottle, which applies a torque on that end. As the water bottle moves across, the COM shifts to
the center and eventually to the other end. The most common failure mode is when the policy fails
to adapt the finger gait within 120 s. The U3-Axis policy achieves +12.5% distance and +153%
velocity over the next best policy.

6.3 Experimental Analysis

Latent Space Analysis. We analyze the extrinsics vector ẑt from our experiments in Figure 7A
with t-SNE to produce 3D plots in Figure 7B. The plots visualize ẑt from the whole duration of
15 rollouts per policy (5 per object). We find a correlation between high dispersion of ẑt clusters

7

Real World Policy Adaptation Experiments
S3-Axis U3-Axis S. Shear Only Normal Only Proprio Only Screwdriver, 0° Water Bottle, 5°Hammer, 20°

Screwdriver (OOD) - Challenging Geometry - 0° Hand Tilt

Control Policy

Avg. Distance

D
is

ta
nc

e
(c

m
)

2

0 00 Control Policy

Avg. Velocity

Ve
lo

ci
ty

 (c
m

/s
)

0.1

0.2

0.3

0.4

4

6

S3
-A

xi
s

U
3-

A
xi

s
S.

 S
he

ar
 O

nl
y

N
or

m
al

 O
nl

y
Pr

op
ri

o
O

nl
y

Success Rate

Control Policy

Su
cc

es
s

Ra
te

 (%
)

20

40

60

80

100

U3-Axis achieves
+6.3% distance
+32% velocity

over next best policy

Latent Space Analysis

Example: Hammer at 20° Hand Tilt, Middle Finger Joint

Proprio Only

S3-Axis

Joint Positions (rad)

Jo
in

t V
el

oc
ity

 (r
ad

/s
)

-8
0.7 0.8 0.9 1.0 1.1 1.2

-4

0
2
4
6
8

-2

-6

Jo
in

t V
el

oc
ity

 (r
ad

/s
)

-8

-4

0
2
4
6
8

-2

-6

Rollout
1
2
3
4
5

Hammer (OOD) - Skewed COM - 20° Hand Tilt

S3-Axis achieves
+149% distance
+20% success

over next best policy
0

Control Policy

Su
cc

es
s

Ra
te

 (%
)

20

0

40

60

80

100
Success Rate

0

Control Policy

2.5

5

7.5

10

12.5

15

0

Avg. Distance

D
is

ta
nc

e
(c

m
)

Ve
lo

ci
ty

 (c
m

/s
)

0

0.02

0.04

0.06

0.08

0.10

0.12

0
Control Policy

Avg. Velocity

Water Bottle (OOD) - Variable COM - 5° Hand Tilt

U3-Axis achieves
+12.5% distance
+153% velocity

over next best policy
0

Success Rate

0
Control Policy

Su
cc

es
s

Ra
te

 (%
)

20

40

60

80

100

0

Ve
lo

ci
ty

 (c
m

/s
)

Control Policy

Avg. Velocity

0

0.1

0.2

0.3

0.4

0

D
is

ta
nc

e
(c

m
)

Control Policy

Avg. Distance

0

2

4

6

8

10

12

Proprio Only

-60

60

0

60

-60
0

0

-60

60

S3-Axis

-60-60
-60

60

0

00

6060

-60-60
-60

60

0

00

6060

U3-Axis

A. B.

Tactile Policies Explore More Finger GaitsC.

0

Figure 7: A) Real world policy adaptation experiments. We highlight experiments near policy adaptation
limits, and show that our S3-Axis and U3-Axis policies generally achieve the best task metrics. Water in the
bottle is annotated for contrast. B) Latent space analysis. We use t-SNE to examine the extrinsics vector ẑt
from our experiments in A. Complete policy failure correlates with high dispersion of ẑt, as shown with U3-
Axis and the hammer, and Proprio Only with the water bottle. C) Tactile policies explore more finger gaits.
These phase portraits show how gaits differ between policies. Intersections through the Poincaré section in the
S3-Axis phase portraits have +35% standard deviation compared to Proprio Only.

and complete policy failure. U3-Axis completely failed with the hammer at 20 degrees and Proprio
Only completely failed with the water bottle at 5 degrees. The ẑt clusters for these failed rollouts
are more dispersed compared to more successful rollouts. In contrast, the S3-Axis policy was more
successful overall and exhibited a dense cluster of ẑt from all rollouts.

Tactile Policies Explore More Finger Gaits. We analyze the joint states of all policies from our
experiments in Figure 7A. We compare the standard deviation of intersections through Poincaré
sections of the phase portraits for each finger motor and find that on average, all tactile policies
explore more joint states relative to Proprio Only, particularly for the hammer and water bottle ex-
periments. Figure 7C shows the contrast in joint state exploration in phase portraits of S3-Axis and
Proprio-Only, where S3-Axis has an increase of 35% standard deviation of intersections through the
Poincaŕe section. Greater joint state exploration is potentially a factor in task success and an indica-
tor of gait adaptation; however, other variables such as gait cycle timing and finger coordination are
also important to consider. More analysis is in the Appendix.

Real-World Videos. We show videos of real-world experiments with our methods and ablations on
our Project Website. These videos can be used to observe task metrics and policy gait adaptation.

7 Conclusion

In this work, we propose a novel sensor model and show it can be used to train RL policies in simula-
tion for a challenging task. Our dexterous in-hand translation policies with ReSkin can be zero-shot
deployed to the real-world. We show that ReSkin shear and normal force sensing consistently en-
ables the best ID performance and adaptation to both OOD hand orientations and objects. We see
these contributions as a key step towards enabling tactile feedback for general in-hand manipulation.

Limitations and Future Work. We mainly study the new sensor model for touch simulation and
learning, and do not consider vision as an input. We will need vision for precise goal-specification.
Our control policy is frozen during deployment, but it would be interesting to use real world tactile

8

https://jessicayin.github.io/tactile-skin-rl/

feedback to fine tune the policy. We can also investigate domain adaptation methods and sensor
simulation improvements for continuous tactile signals, which could enable better performance.

Acknowledgments

This work was conducted while Jessica Yin was an intern and Haozhi Qi was a research fellow with
Meta FAIR. In their academic roles at UC Berkeley, Haozhi Qi and Jitendra Malik are supported
in part by ONR MURI N0001421-1-2801. In her academic role at the University of Pennsylvania,
Jessica Yin was supported by the NSF Graduate Research Fellowship under Grant No. 202095381.
We thank Mustafa Mukadam, Mike Lambeta, Tingfan Wu, Luis Pineda, Taosha Fan, Patrick Lan-
caster, Mrinal Kalakrishnan, Raunaq Bhirangi, Carolina Higuera, Akash Sharma, Suddhu Suresh,
and William Yang for helpful discussions and feedback throughout this work. We thank Dr. Nadia
Figueroa, Ho Jin Choi, Tianyu Li, and Harshil Parekh for access and assistance with the Franka
robot arm and Optitrack system for hardware experiments.

References
[1] R. S. Johansson and J. R. Flanagan. Coding and use of tactile signals from the fingertips in

object manipulation tasks. Nature Reviews Neuroscience, 2009.

[2] M. H. Lee. Tactile sensing: new directions, new challenges. IJRR, 2000.

[3] R. D. Howe. Tactile sensing and control of robotic manipulation. Advanced Robotics, 1993.

[4] W. Yuan, S. Dong, and E. H. Adelson. Gelsight: High-resolution robot tactile sensors for
estimating geometry and force. Sensors, 2017.

[5] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos,
A. Byagowi, G. Kammerer, et al. Digit: A novel design for a low-cost compact high-resolution
tactile sensor with application to in-hand manipulation. RA-L, 2020.

[6] R. Bhirangi, T. Hellebrekers, C. Majidi, and A. Gupta. Reskin: versatile, replaceable, lasting
tactile skins. In 5th Annual Conference on Robot Learning, 2021.

[7] H. Qi, B. Yi, Y. Ma, S. Suresh, M. Lambeta, R. Calandra, and J. Malik. General in-hand object
rotation with vision and touch. In CoRL, 2023.

[8] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang. Rotating without seeing: Towards in-hand
dexterity through touch. In RSS, 2023.

[9] G. Khandate, S. Shang, E. T. Chang, T. L. Saidi, J. Adams, and M. Ciocarlie. Sampling-based
exploration for reinforcement learning of dexterous manipulation. In RSS, 2023.

[10] J. Xu, S. Kim, T. Chen, A. R. Garcia, P. Agrawal, W. Matusik, and S. Sueda. Efficient tactile
simulation with differentiability for robotic manipulation. In CoRL, 2023.

[11] S. Wang, M. Lambeta, P.-W. Chou, and R. Calandra. Tacto: A fast, flexible, and open-source
simulator for high-resolution vision-based tactile sensors. RA-L, 2022.

[12] Z. Si, G. Zhang, Q. Ben, B. Romero, Z. Xian, C. Liu, and C. Gan. Difftactile: A physics-based
differentiable tactile simulator for contact-rich robotic manipulation. arXiv:2403.08716, 2024.

[13] D. Ma, E. Donlon, S. Dong, and A. Rodriguez. Dense tactile force estimation using gelslim
and inverse fem. In ICRA, 2019.

[14] C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea. Ground truth force distribution for
learning-based tactile sensing: A finite element approach. IEEE Access, 2019.

[15] W. Du, W. Xu, J. Ren, Z. Yu, and C. Lu. Tacipc: Intersection-and inversion-free fem-based
elastomer simulation for optical tactile sensors. RA-L, 2024.

9

[16] A. A. Cole, P. Hsu, and S. S. Sastry. Dynamic control of sliding by robot hands for regrasping.
IEEE Transactions on robotics and automation, 1992.

[17] W. Yang and M. Posa. Dynamic on-palm manipulation via controlled sliding. In RSS, 2024.

[18] C. Teeple, B. Aktas, M. C.-S. Yuen, G. Kim, R. D. Howe, and R. Wood. Controlling palm-
object interactions via friction for enhanced in-hand manipulation. RA-L, 2022.

[19] Y. Lin, J. Lloyd, A. Church, and N. F. Lepora. Tactile gym 2.0: Sim-to-real deep reinforcement
learning for comparing low-cost high-resolution robot touch. RA-L, 2022.

[20] Z. Chen, S. Zhang, S. Luo, F. Sun, and B. Fang. Tacchi: A pluggable and low computational
cost elastomer deformation simulator for optical tactile sensors. RA-L, 2023.

[21] Z. Si and W. Yuan. Taxim: An example-based simulation model for gelsight tactile sensors.
RA-L, 2022.

[22] Y. Narang, B. Sundaralingam, M. Macklin, A. Mousavian, and D. Fox. Sim-to-real for robotic
tactile sensing via physics-based simulation and learned latent projections. In ICRA, 2021.

[23] Q. K. Luu, N. H. Nguyen, et al. Simulation, learning, and application of vision-based tactile
sensing at large scale. T-RO, 2023.

[24] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
IROS, 2012.

[25] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simula-
tion for robot learning. In NeurIPS Datasets and Benchmarks, 2021.

[26] S. Cremer, M. N. Saadatzi, I. B. Wijayasinghe, S. K. Das, M. H. Saadatzi, and D. O. Popa.
Skinsim: A design and simulation tool for robot skin with closed-loop phri controllers. IEEE
Transactions on Automation Science and Engineering, 2020.

[27] Z. Kappassov, J.-A. Corrales-Ramon, and V. Perdereau. Simulation of tactile sensing arrays for
physical interaction tasks. In IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, 2020.

[28] T. Hellebrekers, O. Kroemer, and C. Majidi. Soft magnetic skin for continuous deformation
sensing. Advanced Intelligent Systems, 2019.

[29] A. S. Morgan, K. Hang, B. Wen, K. Bekris, and A. M. Dollar. Complex in-hand manipulation
via compliance-enabled finger gaiting and multi-modal planning. RA-L, 2022.

[30] L. Han and J. C. Trinkle. Dextrous manipulation by rolling and finger gaiting. In ICRA, 1998.

[31] J.-P. Saut, A. Sahbani, S. El-Khoury, and V. Perdereau. Dexterous manipulation planning using
probabilistic roadmaps in continuous grasp subspaces. In IROS, 2007.

[32] D. Rus. In-hand dexterous manipulation of piecewise-smooth 3-d objects. IJRR, 1999.

[33] Y. Bai and C. K. Liu. Dexterous manipulation using both palm and fingers. In ICRA, 2014.

[34] I. Mordatch, Z. Popović, and E. Todorov. Contact-invariant optimization for hand manipula-
tion. In Eurographics, 2012.

[35] R. Fearing. Implementing a force strategy for object re-orientation. In ICRA, 1986.

[36] S. P. Arunachalam, I. Güzey, S. Chintala, and L. Pinto. Holo-dex: Teaching dexterity with
immersive mixed reality. In ICRA, 2023.

10

[37] S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one
minute of demonstrations. In RSS, 2023.

[38] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto. Dexterous imitation made easy: A
learning-based framework for efficient dexterous manipulation. In ICRA, 2023.

[39] Y. Qin, H. Su, and X. Wang. From one hand to multiple hands: Imitation learning for dexterous
manipulation from single-camera teleoperation. RA-L, 2022.

[40] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K. Liu. Dexcap: Scalable and portable
mocap data collection system for dexterous manipulation. In RSS, 2024.

[41] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder,
L. Weng, and W. Zaremba. Learning dexterous in-hand manipulation. IJRR, 2019.

[42] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron,
A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welin-
der, L. Weng, Q. Yuan, W. Zaremba, and L. Zhang. Solving rubik’s cube with a robot hand.
arXiv:1910.07113, 2019.

[43] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,
K. Van Wyk, A. Zhurkevich, B. Sundaralingam, Y. Narang, J.-F. Lafleche, D. Fox, and G. State.
Dextreme: Transfer of agile in-hand manipulation from simulation to reality. In ICRA, 2023.

[44] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal. Visual dexterity: In-hand
dexterous manipulation from depth. Science Robotics, 2023.

[45] T. Lin, Z.-H. Yin, H. Qi, P. Abbeel, and J. Malik. Twisting lids off with two hands.
arXiv:2403.02338, 2024.

[46] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik. In-hand object rotation via rapid motor
adaptation. In CoRL, 2022.

[47] M. Yang, C. Lu, A. Church, Y. Lin, C. Ford, H. Li, E. Psomopoulou, D. A. Barton, and N. F.
Lepora. Anyrotate: Gravity-invariant in-hand object rotation with sim-to-real touch. arXiv
preprint arXiv:2405.07391, 2024.

[48] K. M. Lynch and F. C. Park. Modern robotics. Cambridge University Press, 2017.

[49] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017.

[50] WonikRobotics. Allegrohand. https://www.wonikrobotics.com/, 2013.

11

https://www.wonikrobotics.com/

A Demonstrations

A.1 Generalization to Diverse Objects

We demonstrate the generalization of our 3-axis tactile policies to diverse objects, outside of the 4
real world objects in our test set. Please see the supplemental video for footage.

Figure 8: Demonstrations with diverse objects outside of our main test set. All items are being
manipulated by either the U3-Axis policy or the S3-Axis policy. The weights of the objects range
from 57 g (paper towel roll) to 524 g (rolling pin).

A.2 Real ReSkin and U3-Axis Model Comparison

Here, we compare our U3-Axis tactile skin model to a representative example of real ReSkin. This
is the same taxel and same rollout as the examples shown in Figure 3.

Real ReSkin Our U3-Axis Model

Unsigned Binary Signal Normal Signal ZShear Signal YShear Signal X

Time (s)

M
ag

ne
tic

 F
lu

x
(u

T)

Fo
rc

e
(N

)

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Figure 9: Tactile signal comparisons for one taxel during an entire episode of in-hand translation for
U3-Axis and real ReSkin.

12

B Experiments

B.1 Object Dataset

1. Cylinder (ID). This 3D printed uniform cylinder evaluates the policy on an ID object. It has a 6.5
cm diameter and 22.2 cm length, weighing 108 g.

2. Hammer (OOD). The hammer tests adaptation to a skewed COM and rectangular handle geom-
etry. It is 3D printed and inspired by a real hammer from McMaster-Carr1. All dimensions are
scaled by 200% to match the scale of an Allegro Hand compared to a human hand. It has a total
length of 37 cm, and the handle is 6.1 cm by 4.3 cm. The hammer head is 20 cm by 4.8 cm by
6.4 cm. The total weight is 284 g.

3. Screwdriver (OOD). The screwdriver evaluates adaptation to complex geometry and multiple
contacts. It is 3D printed and inspired by a real screwdriver from McMaster-Carr2, also scaled by
200%. The handle diameters range from 3.8 cm to 5.4 cm, and the handle is 23.4 cm. The total
length is 39.4 cm, and it weighs 180 g.

4. Water Bottle (OOD). The water bottle tests adaptation to a variable COM and non-uniform cylin-
drical geometry. The water bottle diameter ranges from 6 to 7 cm, and the total weight is 252 g.
It contains 191 g of water.

B.2 Real World Evaluation Results

Summary tables for all real world experiments are reported below.

Water Bottle - Variable COM
Hand Tilt Policy Success (of 5) ↑ Avg. Dist. (cm) ↑ Avg. Vel. (cm/s) ↑
0 deg. Signed 3-Axis 100 9.38±1.61 0.08±0.07

Unsigned 3-Axis 100 8.13±0.83 0.27±0.02

Signed Shear Only 100 5.57±4.70 0.08±0.11

Normal Only 100 8.17±0.33 0.1±0.02

Proprioception Only 100 10.76±0.64 0.13±0.08

5 deg. Signed 3-Axis 100 6.20±2.63 0.11±0.051

Unsigned 3-Axis 100 9.50±0.64 0.33±0.09

Signed Shear Only 80 4.71±0.19 0.08±0.04

Normal Only 100 8.44±4.05 0.13±0.10

Proprioception Only 0 0 0

10 deg. Signed 3-Axis 100 1.36±1.63 0.03±0.03

Unsigned 3-Axis 0 0 0
Signed Shear Only 0 0 0
Normal Only 0 0 0
Proprioception Only 0 0 0

Table 1: Results for policy adaptation with the water bottle. Success out of 5 trials, translation
distance averaged over successful trials, object velocity averaged over successful trials.

1https://www.mcmaster.com/5914A15/
2https://www.mcmaster.com/7127A34/

13

Cylinder - ID Object
Hand Tilt Policy Success (of 5) ↑ Avg. Dist. (cm) ↑ Avg. Vel. (cm/s) ↑
0 deg. Signed 3-Axis 100 7.43±0.19 0.33±0.01

Proprioception Only 100 5.39±1.61 0.17±0.07

5 deg. Signed 3-Axis 100 7.1±0.47 0.34±0.02

Proprioception Only 100 4.25±0.95 0.05±0.05

10 deg. Signed 3-Axis 100 7.62±0.32 0.22±0.02

Proprioception Only 100 3.72±0.71 0.06±0.02

15 deg. Signed 3-Axis 100 2.66±0.96 0.042±0.01

Proprioception Only 40 0.16±0.15 0.001±0.003

Table 2: Results for policy adaptation with the cylinder. Success out of 5 trials, translation distance
averaged over successful trials, object velocity averaged over successful trials.

Hammer - Skewed COM
Hand Tilt Policy Success (of 5) ↑ Avg. Dist. (cm) ↑ Avg. Vel. (cm/s) ↑
15 deg. Signed 3-Axis 100 12.53±1.08 0.23±0.21

Unsigned 3-Axis 100 5.30±4.40 0.05±0.11

Signed Shear Only 100 6.55±1.35 0.25±0.05

Normal Only 100 7.36±5.93 0.14±0.16

Proprioception Only 100 11.33±1.02 0.23±0.02

20 deg. Signed 3-Axis 100 6.20±2.63 0.11±0.051

Unsigned 3-Axis 100 9.50±0.64 0.33±0.09

Signed Shear Only 80 4.71±0.19 0.08±0.04

Normal Only 100 8.44±4.05 0.13±0.10

Proprioception 0 0 0

Table 3: Results for policy adaptation with the hammer. Success out of 5 trials, translation distance
averaged over successful trials, object velocity averaged over successful trials.

Screwdriver - Challenging Geometry
Hand Tilt Policy Success (of 5) ↑ Avg. Dist. (cm) ↑ Avg. Vel. (cm/s) ↑
0 deg. Signed 3-Axis 100 3.91±0.08 0.23±0.08

Unsigned 3-Axis 100 6.19±1.09 0.33±0.07

Signed Shear Only 100 3.22±2.5 0.14±0.29

Normal Only 100 3.49±1.86 0.19±0.09

Proprioception Only 100 5.82±1.14 0.25±0.13

Table 4: Results for policy adaptation with the screwdriver. Success out of 5 trials, translation
distance averaged over successful trials, object velocity averaged over successful trials.

B.3 Gait Analysis

We show the phase portraits of the middle finger motor for all policies evaluated in the Hammer,
20 degree hand tilt experiment. For this specific example, we analyze joint state exploration by
measuring the standard deviation of intersections through the Poincarè section, which is a plane
through joint velocity = 0 and joint angle < 0.9. Here, S3-Axis has +35% greater deviation, U3-
Axis has +18% deviation, Signed Shear Only has +26% deviation, and Normal Only has -40%
deviation, relative to Proprio Only. Although Normal Only is the exception here, we find that on

14

average with the highlighted experiments in Figure 7, tactile policies generally explore more joint
states.

Rollout
1
2
3
4
5

0.7

-8

8

0

0.8 0.9 1.0 1.2
Joint Angle (rads)

Jo
in

t V
el

oc
ity

 (r
ad

s/
s)

-8

8

0

Jo
in

t V
el

oc
ity

 (r
ad

s/
s)

-8

8

0

Jo
in

t V
el

oc
ity

 (r
ad

s/
s)

1.31.1

-8

8

0

Jo
in

t V
el

oc
ity

 (r
ad

s/
s)

-8

8

0

Jo
in

t V
el

oc
ity

 (r
ad

s/
s) S3-Axis

Proprio Only

U3-Axis

Signed Shear Only

Normal Only

Figure 10: Phase portraits of the middle finger motor, for all policies evaluated for the hammer at 20
degrees.

C Implementation Details

C.1 Reward Function

This is the reward function we use to train the oracle policy:

r
.
= riht +λrotprrotp +λgoalrgoal +λdroprdrop +λposerpose +λworkrwork +λtorquertorque +λforcerforce (1)

The in-hand translation task is defined as riht
.
= −(xobj pos − xobj goal pos)

2, where xobj pos is the
object’s current position and xobj goal pos is the object’s goal position. In this work, randomized goal
positions are a curriculum to produce a versatile, robust finger gait. However, using only this reward
term results in policies that exploit inaccurate sliding contact simulation that do not transfer from
sim-to-real. Thus, we add additional penalties on object state. rrotp

.
= −(xobj left end − xobj right end)

2

penalizes object rotation, rgoal
.
= (1 if

√
(xi,obj pos − xi,obj goal pos)2 < ϵ else 0) as another reward

when the object reaches the goal position, and rdrop
.
= min(max((xobj pos − xthreshold),−1), 0) to

penalize dropping the object.

For the emergence of the finger gait, we use the following penalty terms on the robot hand, similar
to [46, 7]: rpose

.
= −||q − qinit||22 to penalize finger pose deviation, rwork

.
= −τT q̇ to penalize

energy consumption, rtorque
.
= −||τ ||22 to penalize applied finger torque, where. Furthermore, we

add rforce
.
= − 1

4

∑4
i=1(Fi − µ)2 to penalize the variance of forces applied by all fingers, where Fi

is the total force applied by all rigid bodies in one finger, i corresponds to each finger, and µ is the
mean force of all fingers. We empirically found this term to encourage policy behaviors that transfer
well to the real world.

15

C.2 Hyperparameters

Reward Function
Reward Term Scale, λ

riht 700
rrotp 500
rgoal 10
rdrop 1000
rpose −0.3
rwork −2.0
rtorque −0.1
rforce 500

Table 5: Reward scales for the oracle policy.

Simulation Physics
Parameter Randomization Range or Value

Object Scales [0.7, 1.2]
Object Mass [0.1, 0.35] kg

Object Center of Mass (COM) [−0.01, 0.01] m
Coefficient of Friction [0.3, 3.0]
PD Controller Stiffness [2.9, 3.1]
PD Controller Damping [0.09, 0.11]

Contact Offset 0.002
Bounce Threshold Velocity 0.2 m/s
Max Depenetration Velocity 1.0 m/s

Table 6: Physics parameters for policy training in simulation. For the object scales, the range is
discretized by 0.02 and the scales are applied to one canonical cylinder.

Tactile Skin Simulation
Term Value

Sensing Range Threshold (Beyond Taxel) 1 cm
Sensing Range Randomization 15%

Sensor Noise 3%
Threshold for Binary Values 0.0005 N

Table 7: Parameters for our tactile skin model implemented in IsaacGym.

Binary Filter for Real ReSkin
Axis Threshold Current Buffer Size History Buffer Size Filter Window Filter α

X (Shear) 0.75 10 50 10 0.4

Y (Shear) 0.7 10 50 10 0.4

Z (Normal) 0.67 10 50 10 0.4

Table 8: Binarization filter parameters for real ReSkin, which uses two buffers to calculate the time
derivative of the signals. We smooth all raw ReSkin inputs with an exponential moving average filter
prior to input to the buffers, and the window size and α smoothing parameter is reported above.

16

C.3 Training Settings

Simulation Settings. When training the oracle policy, we use 32768 parallel environments, dis-
tributed on 4 GPUs, to train the agent. Each environment contains a simulated Allegro Hand, simu-
lated ReSkin palm collision geometries, a cylinder with randomized parameters (Table 6), as well as
random initial and goal positions. The ReSkin palm tactile outputs are not simulated for the oracle
policy, but we include the collision geometries for the oracle policy, to have consistent dynamics
when training the student policy. The simulation frequency is 200 Hz, the control frequency is 20
Hz, each episode lasts for 400 control steps (20 s). The wall clock time for oracle policy training is
1.68 days.

When training the tactile and proprioceptive policies, we simulate the ReSkin palm outputs (Table
7), and instead we use 1000 parallel environments distributed across 2 GPUs. Unless mentioned
otherwise, the simulation settings are the same as the oracle policy. The wall clock time for training
the student policy with tactile skin simulation is 6.27 hours.

Stable Grasp Generation. Both the oracle and tactile policies assume that the object is initialized
in a stable grasp, similar to [46, 7]. We pre-generate caches of stable grasp poses for training.

First, we define canonical poses for the fingers, which varies for each scale of the object. Be-
cause we train for a large range of scales, the same canonical pose will not work for the entire
range. Then, we define a range of relative offsets within [−0.25, 0.25] rad to randomly sample
from. Additionally, we define a canonical position for the object and sample from a relative offset
of [−10, 10] cm along the x-axis for the object. The canonical object pose is the same for all scales:
[x, y, z, wquat, xquat, yquat, zquat] = [0, 0, 0.52, 0,−0.5, 0, 0.5].

We let the simulation run for 0.5 s. The finger and object positions are saved (i.e., deemed a stable
grasp) if the following conditions are satisfied:

1. All fingertips are within 10 cm of the object.
2. At least 2 fingers are in contact with the object.
3. The object did not fall below the hand.
4. The object is in contact with the palm.

We sampled 50,000 grasps and object poses for each object scale.

Goal Generation. The goal position for the object is sampled from a range of relative offsets [3, 10]
cm along the x-axis from the object’s canonical pose. The minimum offset is 3 cm to encourage
meaningful object translation, and the maximum is 10 cm which is at the end of the canonical
cylinder length.

C.4 Hardware Setup

3M High Friction Tape

Thin Plastic Sheet

Figure 11: Friction modifications for
Allegro Hand and ReSkin.

We place a 0.25mm sheet of PET-like plastic on top of
the ReSkin palm to reduce friction between the sensing
skin and the object. Reducing the friction will reduce the
required torque from the fingers to move the object; this
avoids overheating the motors. The plastic sheet is not
adhered to the sensing skin.

We also place high-friction 3M tape (3M 300LSE) at the
base of thumb and index finger motors. This reduces ob-
ject slip and somewhat helps with object translation, since
the policy sometimes pinches the object between these
fingers during part of the finger gait. We also cover the
outside casing of the fingertips with the same 3M tape,
although they typically do not contact the object.

17

	Introduction
	Related Work
	Tactile Skin Model
	Discretization
	Compliance
	Shear and Normal Sensor Signals
	Real-World Binary Tactile Processing

	Learning In-Hand Translation with Tactile Skin
	Experiment Setup
	Results and Analysis
	Tactile Sensing Boosts In-Domain Task Performance and Adaptation to OOD Hand Tilt
	Three-Axis Tactile Sensing Enables Superior Out-of-Domain Adaptation
	Experimental Analysis

	Conclusion
	Demonstrations
	Generalization to Diverse Objects
	Real ReSkin and U3-Axis Model Comparison

	Experiments
	Object Dataset
	Real World Evaluation Results
	Gait Analysis

	Implementation Details
	Reward Function
	Hyperparameters
	Training Settings
	Hardware Setup

